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We present nucleon observables — primarily isovector vector form factors — from calculations

using 2+1 flavors of Wilson quarks. One ensemble is used for a dedicated high-precision study

of excited-state effects using five source-sink separations between 0.7 and 1.6 fm. We also present

results from a larger set of calculations that include an ensemble with pion mass 149 MeV and box

size 5.6 fm, which nearly eliminates the uncertainty associated with extrapolation to the physical

pion mass. The results show agreement with experiment for the vector form factors, which occurs

only when excited-state contributions are reduced. Finally, we show results from a subset of

ensembles that have pion mass 254 MeV with varying temporal and spatial box sizes, which we

use for a controlled study of finite-volume effects and a test of the “mπ L = 4” rule of thumb.

31st International Symposium on Lattice Field Theory LATTICE 2013

July 29 – August 3, 2013

Mainz, Germany

∗Speaker.
†Current affiliation: Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
7
6

Nucleon form factors with light Wilson quarks Jeremy Green

1. Introduction

The isovector Dirac and Pauli form factors are defined via nucleon matrix elements of the

vector current:

〈N(p′)|ψ̄γ
µ

τ
a
ψ|N(p)〉= ū(p′)

(

γ
µFv

1 (Q
2)+

iσ µνqν

2m
Fv

2 (Q
2)

)

τ
aū(p), (1.1)

where ψT = (u,d), q = p′− p, and Q2 =−q2. For connecting with experiment, this means that

Fv
1,2 = F

p
1,2 −Fn

1,2, (1.2)

where F
p,n

1,2 are form factors of the electromagnetic current in a proton and in a neutron. Near

zero momentum transfer, these contain the isovector Dirac and Pauli radii and anomalous magnetic

moment:

Fv
1 (Q

2) = 1−
1

6
(r2

1)
vQ2 +O(Q4) (1.3)

Fv
2 (Q

2) = κ
v

(

1−
1

6
(r2

2)
vQ2 +O(Q4)

)

. (1.4)

In recent years there has been increased attention paid to the problem of excited-state con-

tamination in lattice QCD calculations of nucleon structure observables. These arise when the

Euclidean time separations between the nucleon source and the vector current, and between the

vector current and the nucleon sink, are too small to effectively filter out other states with the same

quantum numbers as the ground-state nucleon. In Sec. 2, we report results from a high-precision

study of excited-state effects using calculations with multiple source-sink separations, which allow

for testing different methods for computing matrix elements.

We also report results from a separate set of calculations using eleven lattice ensembles with a

range of pion masses and lattice volumes. We show in Sec. 3 that good agreement with experiment

for the isovector vector form factors is achieved only when excited states are under reasonable

control and the pion mass is near the physical point. In Sec. 4, we describe the results of a controlled

study of finite-volume effects using four ensembles with mπ = 254 MeV.

2. High-precision study of excited-state effects

For studying excited-state effects, we use a single ensemble generated by USQCD with 2+1

flavors of Wilson-clover fermions coupled to gauge fields smeared with one level of stout smearing,

as was used for N f = 3 ensembles in Ref. [1]. This ensemble has lattice volume 323 × 96, lattice

spacing a ≈ 0.11 fm, and pion mass mπ ≈ 317 MeV. On it, we compute nucleon observables using

five source-sink separations T/a ∈ {6,8,10,12,14}, covering a range between 0.7 and 1.6 fm.

High precision is achieved by performing 24672 measurements on 1028 gauge configurations.

We use three different methods for computing matrix elements from two-point and three-point

correlators:

1. The traditional ratio-plateau method. For each source-sink separation, averaging over a fixed

number of points at the center of each plateau yields a result with excited-state contributions
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asymptotically falling off as e−∆Emin
10 T/2, where ∆Emin

10 = min{∆E10(~p),∆E10(~p
′)} and the

latter are the energy gaps between the ground state and the first excited state at the source

and at the sink.

2. The generalized pencil-of-function, or GPoF, method [2]. This is based on the recognition

that the time-displaced nucleon interpolating operator Nτ(t) ≡ N(t + τ) is linearly indepen-

dent from N(t). Therefore, by combining three-point correlators with three equally-spaced

source-sink separations, we can use the variational method [3, 4] to find linear combina-

tions of N and Nτ that asymptotically eliminate the lowest-lying excited state. Applying the

ratio-plateau method to the result yields the ground-state matrix element with excited-state

contributions that behave like e−∆Emin
20 T/2.

3. The summation method involves using the ratio method, summing over the operator-insertion

time, and finding the dependence of the resulting sums on the source-sink separation. This

requires at least two source-sink separations, but asymptotically reduces the excited-state

errors to Te−∆Emin
10 T [5, 6].

With the data collected on this ensemble, the dependence on source-sink separation of each of

these methods can be probed: the five source-sink separations yield five different ratio-method

results; using GPoF with τ = 2a makes use of three adjacent source-sink separations, which can

be the lowest, middle, or largest three to yield three different results; and taking the difference

between sums at adjacent source-sink separations yields four different summation-method results.

The resulting Dirac and Pauli form factors computed using these methods are shown in Fig. 1.

The effect of excited-state contamination can be clearly seen in the ratio-method data at low

source-sink separations. The value of F1(Q
2) tends to decrease as excited states are removed by

increasing the source-sink separation, and this effect grows stronger at larger Q2. The result is

that the value of the Dirac radius, given by the slope of F1(Q
2) at Q2 = 0, tends to increase as

excited-state effects are removed.

At low Q2, the value of F2(Q
2) shows a strong increase with the source-sink separation; this

effect decreases at larger Q2, and between 0.5 and 0.7 GeV2 it appears to change sign. This means

that the slope and the intercept, extrapolated to Q2 = 0, will both grow as excited-state effects are

removed, causing the computed values of the magnetic moment and Pauli radius to increase.

For the Dirac form factor, the ratio method appears to stabilize at a plateau by the third or

fourth source-sink separation, i.e., around 1.1 to 1.3 fm. The ratio data for the Pauli factor at low

Q2 generally don’t appear to be approaching a plateau, although it is possible that the apparent ac-

celerating growth with the source-sink separation may simply be a random fluctuation of correlated

data; comparing momentum transfer #4 with the adjacent two suggests that this may be the case.

The GPoF method produces results that are quite similar to what is obtained from the ratio

method using the largest of the three source-sink separations used for GPoF, although with slightly

larger errors.

The power of the summation method for eliminating excited-state contamination can be seen

by considering the smallest two source-sink separations. Using the ratio method, this produces

the first two ratio points in the plots, which suffer from significant excited-state effects. However,

the same data can be combined to produce the first set of summation points, which are generally
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# 〈~n′| |~n〉

0 〈0,0,0| |0,0,0〉

1 〈0,0,0| |1,0,0〉

2 〈−1,0,0| |−1,1,0〉

3 〈0,0,0| |1,1,0〉

4 〈−1,0,0| |−1,1,1〉

5 〈−1,0,0| |0,1,0〉

6 〈0,0,0| |1,1,1〉

7 〈−1,0,0| |0,1,1〉

8 〈−1,0,0| |1,0,0〉

9 〈−1,0,0| |1,1,0〉

10 〈−1,0,0| |1,1,1〉

Figure 1: Isovector Dirac and Pauli form factors Fv
1 (Q

2) and Fv
2 (Q

2) on the USQCD ensemble, computed

using the ratio, GPoF, and summation methods. Each method is shown with multiple points at each Q2,

corresponding to different source-sink separations increasing from left to right. The table lists representative

source and sink momenta (~p = 2π

Ls
~n and ~p′ = 2π

Ls
~n′, respectively) for each momentum transfer Q2.

compatible with the plateau ultimately obtained using the ratio method (for F1) or with the fourth

ratio-method point (for F2). On the other hand, the summation method produces rather large sta-

tistical errors, so it is still not clear as to whether the summation method is generally superior to

simply using the ratio method at larger source-sink separations.

3. Isovector vector form factors near the physical pion mass

Our larger set of calculations uses the action developed by the BMW collaboration, with

2+ 1 flavors of Wilson-clover fermions coupled to gauge fields smeared with two levels of HEX

smearing [7]. We use mostly “coarse” ensembles with a = 0.116 fm and pion masses ranging

from the near-physical 149 MeV to 356 MeV, with spatial box sizes that mostly satisfy mπLs & 4.
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Figure 2: Isovector electric and magnetic form factors, computed on the mπ = 149 MeV ensemble using

the summation method (data at nearby Q2 are binned for clarity). The curves are from the fit to experiment

in Ref. [9].

On each ensemble, we compute three-point correlators using three source-sink separations that are

close to the middle three used for the high-precision study in the previous section. Because the

data are noisier than in the previous section, we use the summation method in just one way, fitting

a line to the sums for the three source-sink separations.

With these ensembles, we performed dipole fits in the range 0 ≤ Q2 < 0.5 GeV2 to determine

the Dirac and Pauli radii and the anomalous magnetic moment. Using the summation method and

extrapolating these quantities to the physical pion mass produced agreement with experiment [8],

and their values on the ensemble with mπ = 149 MeV and Ls = 5.6 fm were also close to the

experimental values.

To avoid the complications involved in determining behavior at Q2 = 0, it is interesting to

compare the form factors themselves with experiment. To that end, we plot the Sachs form factors,

Gv
E(Q

2) = Fv
1 (Q

2)−
Q2

2mN

Fv
2 (Q

2) (3.1)

Gv
M(Q2) = Fv

1 (Q
2)+Fv

2 (Q
2), (3.2)

from the mπ = 149 MeV ensemble together with experimental curves that include experimental

uncertainties [9], in Fig. 2. The lattice data are consistent with experiment (p = 0.64 for GE and

p = 0.81 for GM), but this is only achieved with both reasonable control over excited states and

a near-physical pion mass. If either of these conditions is not satisfied, then the agreement fails;

for example, using the ratio method with T = 1.16 fm or using an ensemble with mπ = 254 MeV

yields p < 10−3.

4. Controlled study of finite-volume effects

A particular subset of the ensembles used for the calculations described in the previous section

allows for a controlled study of finite-volume effects. This consists of four ensembles with mπ =

254 MeV that differ only in their space and time extents: with a = 0.116 fm, these are 243 × 24,

243 × 48, 323 × 24, and 323 × 48. We look for the volume dependence of a given observable by

fitting

A+Be−mπ Ls +Ce−mπ Lt (4.1)
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Figure 3: Relative finite-volume errors from ensembles with mπ = 254 MeV, interpolated to mπ Ls = 4 and

mπ Lt = 4. In terms of the fit parameters in Eq. 4.1, the plotted data are e−4B/A and e−4C/A.

to the four data points. We then use this for interpolating to test the “mπL = 4” rule of thumb and

determine the relative error caused by mπLs = 4 and mπLt = 4 via e−4B/A and e−4C/A, respec-

tively.

Using the summation-method results, we find that finite-volume errors are consistent with zero

for (r2
1)

v, (r2
2)

v, and κv, although the statistical uncertainties are moderately large: for e−4B/A, they

are roughly 0.1 for (r2
1)

v and κv, and 0.2 for (r2
2)

v; the corresponding statistical uncertainties for

e−4C/A are slightly smaller.

Reduced statistical uncertainties can be obtained by using the ratio method, although there is

the possibility that volume dependence could be caused by volume-dependent excited-state effects

(such as those from multiparticle states), rather than a finite-volume effect in the ground state. For

(r2
1)

v, the ratio method at T = 0.93 fm still shows no sign of finite-volume effects, and the statistical

uncertainty at mπL= 4 is reduced to 0.02. On the other hand, the same method indicates that κv and

(r2
2)

v suffer from a −5% shift at mπLs = 4 and a similar shift in the opposite direction at mπLt = 4.

These results are summarized in Fig. 3, where we also show the axial charge gA and the isovec-

tor average quark momentum fraction 〈x〉u−d . The former shows finite-volume effects consistent

with zero and (at the one-sigma level) smaller than those observed in Ref. [10]; using the shortest

source-sink separation suggests that such effects are smaller than 1% when mπL = 4. On the other

hand, the latter does show signs of finite-volume effects, with shifts in opposite directions caused

by finite spatial and temporal extents.

5. Conclusions

It has become clear that the use of multiple source-sink separations for identifying and con-

trolling the presence of excited-state contamination is essential for a realistic calculation of nucleon

structure observables using lattice QCD. Applying the summation method on an ensemble with a

near-physical pion mass, we calculated isovector electric and magnetic form factors that are con-

sistent with experiment.

Using a fully-controlled study of finite-volume effects at mπ = 254 MeV, we found no such

effects for the isovector Dirac radius or the axial charge, at the presently-available level of precision,

and an indication of some possible non-negligible effects for the isovector Pauli radius, anomalous

magnetic moment, and quark momentum fraction.
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